Induction of activator protein-1 through reactive oxygen species by crystalline silica in JB6 cells.
نویسندگان
چکیده
We reported previously that freshly fractured silica (FFSi) induces activator protein-1 (AP-1) activation through extracellular signal-regulated protein kinases (ERKs) and p38 kinase pathways. In the present study, the biologic activities of FFSi and aged silica (ASi) were compared by measuring their effects on the AP-1 activation and phosphorylation of ERKs and p38 kinase. The roles of reactive oxygen species (ROS) in this silica-induced AP-1 activation were also investigated. We found that FFSi-induced AP-1 activation was four times higher than that of ASi in JB6 cells. FFSi also caused greater phosphorylation of ERKs and p38 kinase than ASi. FFSi generated more ROS than ASi when incubated with the cells as measured by electron spin resonance (ESR). Studies using ROS-sensitive dyes and oxygen consumption support the conclusion that ROS are generated by silica-treated cells. N-Acetylcysteine (an antioxidant) and polyvinyl pyridine-N-oxide (an agent that binds to Si-OH groups on silica surfaces) decreased AP-1 activation and phosphorylation of ERKs and p38 kinase. Catalase inhibited phosphorylation of ERKs and p38 kinase, as well as AP-1 activation induced by FFSi, suggesting the involvement of H(2)O(2) in the mechanism of silica-induced AP-1 activation. Sodium formate (an ( small middle dot)OH scavenger) had no influence on silica-induced MAPKs or AP-1 activation. Superoxide dismutase enhanced both AP-1 and MAPKs activation, indicating that H(2)O(2), but not O(2), may play a critical role in silica-induced AP-1 activation. These studies indicate that freshly ground silica is more biologically active than aged silica and that ROS, in particular H(2)O(2), play a significant role in silica-induced AP-1 activation.
منابع مشابه
Redox effector factor-1, combined with reactive oxygen species, plays an important role in the transformation of JB6 cells.
Apurinic/apyrimidinic endonuclease/redox effector factor-1 (APE/Ref-1) is a multifunctional protein involved both in DNA base excision repair and redox regulation. Studies have suggested that abnormal Ref-1 levels and/or activities are associated with tumor progression and sensitivities to treatment, but no direct evidence has yet been published regarding the role of Ref-1 in malignant transfor...
متن کاملFreshly fractured crystalline silica induces activator protein-1 activation through ERKs and p38 MAPK.
The transcription factor activator protein-1 (AP-1) reportedly plays an important role in the induction of neoplastic transformation and multiple genes involved in cell proliferation, differentiation, and inflammation. To investigate the mechanisms of silica-induced carcinogenesis, AP-1-luciferase reporter transgenic mice were used as an in vivo model, whereas the JB6 mouse epidermal cell line ...
متن کاملInhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways.
With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni ...
متن کاملMechanism of N-acetyl-cysteine inhibition on the cytotoxicity induced by titanium dioxide nanoparticles in JB6 cells transfected with activator protein-1
The present study investigated the mechanism of N-acetyl-cysteine (NAC) inhibition on the cytotoxicity induced by titanium dioxide (TiO2) nanoparticles (NPs) using murine epidermal JB6 cells transfected with activator protein-1 (AP-1), JB6-AP-1 cells. Confocal microscopy was performed to localize TiO2 NPs in cultured cells. The level of reactive oxygen species (ROS) present in cells was evaluat...
متن کاملInvolvement of protein kinase C in crystalline silica-induced activation of the MAP kinase and AP-1 pathway.
Crystalline silica has long been well established as a fibrogenic agent, and recent evidence has implicated it as a potential human carcinogen. However, the mechanisms of silica-induced disease development and progression are not well understood. Our previous studies demonstrated that crystalline silica is able to activate activator protein-1 (AP-1) through mitogen-activated protein kinase (MAP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 12 شماره
صفحات -
تاریخ انتشار 2001